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Abstract

Drug transporters are now widely acknowledged as important determinants
governing drug absorption, excretion, and, in many cases, extent of drug
entry into target organs. There is also a greater appreciation that altered
drug transporter function, whether due to genetic polymorphisms, drug-
drug interactions, or environmental factors such as dietary constituents, can
result in unexpected toxicity. Such effects are in part due to the interplay
between various uptake and efflux transporters with overlapping functional
capabilities that can manifest as marked interindividual variability in drug
disposition in vivo. Here we review transporters of the solute carrier (SLC)
and ATP-binding cassette (ABC) superfamilies considered to be of major
importance in drug therapy and outline how understanding the expression,
function, and genetic variation in such drug transporters will result in better
strategies for optimal drug design and tissue targeting as well as reduce the
risk for drug-drug interactions and adverse drug responses.
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SLC: solute carrier

OCT: organic cation
transporter

MATE: multidrug
and toxin extrusion

OAT: organic anion
transporter

OATP: organic anion
transporting
polypeptide

ABC: ATP-binding
cassette

MRP: multidrug
resistance-associated
protein

INTRODUCTION

Optimizing drug efficacy and minimizing drug toxicity requires that the drug reach its target
at adequate concentration, without excessive accumulation in other tissues. For many drugs in
clinical use today, intracellular concentration is determined by the balance in activity of multiple
uptake and efflux transporters that facilitate the drugs’ movement across biological membranes.
Transporters are large, membrane-bound proteins expressed in tissues throughout the body; those
found in the epithelia of major organs of absorption and secretion such as liver, intestine, and kidney
and in sanctuary sites such as the brain, testes, and placenta are of particular importance in drug
disposition (Figure 1). Interindividual variation in transporter activity can arise from numerous
factors, including genetic heterogeneity, certain disease processes, concomitant medications, and
herbals and dietary constituents that may inhibit or induce transporter expression or activity
(1–3).

Transporter function has been studied extensively in vitro through the use of cRNA-injected
Xenopus laevis oocytes and transfected mammalian cell lines. Knockout mice and other animal
models have provided significant insights into the role of transporters in vivo, particularly when
multiple transporters with overlapping substrate specificities are expressed in the same tissue. How-
ever, species-related differences in transporter expression and substrate specificity are relatively
common and need to be considered when the results of experiments in rodent models are being
interpreted. In humans, the role of transporters in drug efficacy and toxicity has been indirectly
shown by inhibition or induction studies both in healthy volunteers and in patients. Naturally
occurring genetic polymorphisms cause reduced expression or function of specific transporters,
an effect that is not readily achieved by pharmacological inhibitors in most cases. For this reason,
studies in human subjects with genetic polymorphisms have been instrumental in defining the
clinical relevance of certain transporters to drug disposition and response.

Given the critical role of transporters in mediating the pharmacokinetics of many drugs, trans-
porter studies are an important part of the drug discovery and development process. A recent
report from the International Transporter Consortium provides some guidance for the circum-
stances under which transporter studies may be indicated for a new molecular entity during the
drug development process, with the caveat that the proposed decision structures will continue to
evolve as the drug transporter field matures (1).

In this review, we focus on transporters with well-defined roles in drug efficacy and toxicity.
From the solute carrier (SLC) superfamily, these include the organic cation transporters
(OCTs/SLC22A), the multidrug and toxin extrusion transporters (MATE transporters/SLC47A),
the organic anion transporters (OATs/SLC22A), and the organic anion transporting polypeptides
(OATPs/SLCO). Members of the ATP-binding cassette (ABC) superfamily important in drug
efficacy and toxicity include P-glycoprotein (MDR1/ABCB1), breast cancer resistance protein
(BCRP/ABCG2), and transporters of the multidrug resistance-associated protein (MRP/ABCC)
family.

UPTAKE TRANSPORTERS OF THE
SOLUTE CARRIER SUPERFAMILY

The SLC superfamily is a large family of membrane-bound transporters that share 20–25% se-
quence homology. SLC transporters translocate their substrates across biological membranes
through numerous mechanisms, including facilitated diffusion, ion coupling, and ion exchange,
which, in some cases, is driven by an ion gradient that is maintained by active transporters of the
ABC superfamily (4).
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Figure 1
Expression of transporters with major roles in drug efficacy or toxicity in (a) human intestinal epithelia, (b) kidney proximal tubule
epithelia, (c) hepatocytes, and (d ) brain capillary endothelial cells. Transporters discussed in the text are colored red. NTCP, ASBT,
and BSEP are bile acid transporters. PEPT1 and PEPT2 transport small peptide fragments. OCTN1 and OCTN2 transport organic
cations and carnitine. Abbreviations: ASBT, apical sodium-dependent bile acid cotransporter; BCRP, breast cancer resistance protein;
BSEP, bile-salt export pump; MATE, multidrug and toxin extrusion; MRP, multidrug resistance-associated protein; NTCP,
sodium-dependent taurocholate cotransporting polypeptide; OAT, organic anion transporter; OATP, organic anion transporting
polypeptide; OCT, organic cation transporter; OCTN, organic cation/carnitine transporter; PEPT, peptide transporter;
P-gp, P-glycoprotein.

Organic Cation Transporters

Organic cation transporters (OCTs/SLC22A) identified in humans include OCT1 (SLC22A1)
and OCT2 (SLC22A2), which are predominantly expressed on the basolateral membranes of
hepatocytes and kidney proximal tubules, respectively, and OCT3 (SLC22A3), which is more
widely expressed in tissues throughout the body. OCTs are uptake transporters that control
cellular entry of small, positively charged compounds, including endogenous substrates, such
as monoamine neurotransmitters and creatinine, and numerous drug substrates, including the
platinum-containing antineoplastics, the antidiabetic metformin, and the histamine H2 receptor
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SNP:
single-nucleotide
polymorphism

antagonist cimetidine (5–7). OCT expression is highly variable among individuals, which may
be a result of genetic variants or disease processes: A study of OCT1 and OCT3 expression in
150 livers from Caucasian subjects revealed significant variation that was associated with genetic
polymorphisms and cholestasis (8).

Organic cation transporters in efficacy. The importance of cation transport in drug efficacy has
been appreciated as a result of studies of metformin, a commonly prescribed antidiabetic whose
clinical response is highly variable. Metformin lowers blood glucose primarily by reducing hepatic
glucose production and enhancing peripheral insulin sensitivity and is eliminated by the kidney
unchanged (9). A large number of functional single-nucleotide polymorphisms (SNPs) in genes
encoding OCTs have been identified and characterized in vitro (10–16), and subsequent studies
have demonstrated a role for SLC22A1 and SLC22A2 polymorphisms in mediating metformin
pharmacokinetics and response in healthy volunteers (17–21; Table 1). The relative contribution

Table 1 Transporter polymorphisms involved in metformin pharmacokinetics and response

Transporter/polymorphism Population studied Experimental approach
Effect of

polymorphism Reference(s)
OCT1
R61C (rs12208357)
G401S (rs34130495)
420del (rs72552763)
G465R (rs34059508)

Healthy subjects
(n = 20)

Candidate gene;
Full pharmacokinetics
profile

Increased Cmax and
AUC

20

Healthy subjects
(n = 21)

Candidate gene;
Oral glucose tolerance
test

Higher plasma glucose
levels

19

Polycystic ovary
syndrome patients
(n = 150)

Candidate gene;
Prospective population
cohort study

Reduced effect on total
cholesterol,
triglycerides, and
insulin levels

29

OCT1 (rs622342) Diabetic patients
(n = 102)

Candidate gene;
Retrospective population
cohort study

Less reduction in
HbA1c measurement

28

OCT2
c.808G>T (rs316019) and
others

Healthy subjects Candidate gene;
Full pharmacokinetics
profile

Reduced metformin
renal clearance;

Increased Cmax and
AUC

17, 18, 21

OCT1, OCT2, OCT3, OCTN1,
and MATE1

Healthy subjects
(n = 103)

Candidate gene;
Full pharmacokinetics
profile

Renal secretion
increased by OCT
variants

22

MATE1, MATE2-K Diabetic patients
(n = 48)

Candidate gene;
Sparse pharmacokinetics
profile

No effect 50

MATE1 (rs2289669) Diabetic patients
(n = 116)

Candidate gene;
Population cohort study

Increased HbA1c
reduction

51

Diabetic patients
(n = 98)

Candidate gene;
Population cohort study

Increased HbA1c
reduction in patients
with OCT1 rs622342
polymorphism

52

Abbreviations: AUC, area under the curve; Cmax, maximum concentration; MATE, multidrug and toxin extrusion; OCT, organic cation transporter.
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of each of the cation transporters to the distribution of shared substrates such as metformin remains
to be determined. Genetic variation in genes encoding OCT1, OCT2, OCT3, and MATE1 was
investigated in a large cohort of 103 subjects, and in this analysis, only reduced-function SLC22A1
polymorphisms were associated with increased renal clearance of metformin. OCT1 was localized
to the apical membrane of the kidney in this study, suggesting that reduced renal reuptake may
be the mechanism underlying their observations (22).

In addition to genetic polymorphisms, functional inhibition of OCTs may account for some
of the variability observed in metformin pharmacokinetics. In vitro studies of OCT1 transport
demonstrated that inhibition of OCT1-mediated metformin uptake by commonly used medica-
tions such as amitriptyline and verapamil was genotype dependent, suggesting that individuals
harboring certain polymorphisms may be at greater risk for OCT1-mediated drug-drug interac-
tions (23). Induction of OCTs may also be important in the pharmacokinetics of cationic com-
pounds. Recently, concomitant administration of the pregnane X receptor agonist rifampicin was
demonstrated to increase the glucose-lowering effect of metformin in healthy subjects, possibly
owing to increased OCT1 expression and hepatic uptake of metformin (24).

Whether changes in pharmacokinetics caused by altered OCT expression or function lead
directly to a change in response is an important question. Oct1−/− mice exhibited changes in both
metformin pharmacokinetics and metformin response, as liver accumulation of metformin was
reduced 30-fold compared with wild-type animals (25) and as plasma glucose-lowering response
was eliminated (19). Oct1−/− mice were also protected from metformin-induced lactic acidosis,
implicating the liver as the primary organ responsible for this potentially fatal side effect of met-
formin use (26). In humans, OCT1, but not OCT2, expression was observed in subcutaneous and
visceral adipose tissue, and OCT1 expression was increased in samples from obese subjects, sug-
gesting that metformin action in these tissues may account for better metformin response in obese
individuals (27). Analysis of a cohort study revealed a modest association between the SLC22A1
polymorphism rs622342 and reduced metformin effect as measured by HbA1c levels in diabetic
patients (28). In a study of 150 women receiving metformin to treat polycystic ovary syndrome,
the presence of two or more SLC22A1 polymorphisms was associated with a reduced effect of
metformin on total cholesterol, triglycerides, and insulin levels (29). A study of SLC22A1 and
SLC22A2 polymorphisms in a small number of metformin responders and nonresponders identi-
fied SLC22A1 variants that were weak predictors of response (30), but a larger study failed to find
an association between SLC22A1 variants and metformin response (31). Loss-of-function poly-
morphisms in SLC22A1 were also associated with higher plasma concentrations and increased
clinical efficacy of the antiemetic drugs tropisetron and ondansetron, presumably owing to re-
duced hepatic uptake and subsequent reduction in metabolic inactivation of the drugs by the liver
(32).

OCTs are also increasingly recognized for their importance in delivery of antineoplastics to
target tissues. OCT1 was identified as a major contributor to the uptake of the tyrosine kinase
inhibitor imatinib in chronic myeloid leukemia cells (33). The association of OCT1 mRNA ex-
pression and polymorphisms with responses to imatinib has not been consistently replicated;
however, ex vivo assays of OCT1 activity in peripheral blood mononuclear cells may predict ima-
tinib response (34, 35). Cytotoxicity induced by the platinum-based anticancer drug oxaliplatin
was dependent on OCT1 and OCT2 expression in vitro (36). Studies in Oct1−/− mice did not show
a change in oxaliplatin pharmacokinetics; however, this result may be due to species-dependent
differences in substrate specificity (37). Thus, OCT expression may contribute to the efficacy
of anticancer agents such as imatinib and oxaliplatin and has been proposed as a biomarker for
choosing appropriate therapeutic agents.
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Organic cation transporters in toxicity. The platinum-based antineoplastic cisplatin is a widely
used treatment for solid tumors. However, cisplatin-induced nephrotoxicity and ototoxicity are of-
ten dose-limiting side effects. The reduced-function SLC22A2 SNP rs316019 was associated with
reduced nephrotoxicity from cisplatin in cancer patients (38). This observation is supported by
studies of cisplatin pharmacokinetics in Oct1−/− and Oct2−/− mice. Oct1 and Oct2 are both highly
expressed in mouse kidney, whereas in human kidney, OCT2 expression is dominant. Oct1−/− and
Oct2−/− mice showed no difference in cisplatin pharmacokinetics; however, in Oct1/2−/− mice,
reduced urinary excretion and nephrotoxicity was observed (38). Oct1/2−/− mice were also pro-
tected from cisplatin-induced ototoxicity (39). Oct2 mRNA was observed in murine cochlear hair
cells, suggesting that OCT inhibition may be useful in protecting against hearing loss. In this study
(39), mRNA from pediatric tumors did not express OCTs, suggesting that OCT inhibition would
not affect tumor cisplatin uptake and thus may be a feasible approach. The use of OCT inhibitors
to prevent cisplatin toxicity has been studied in other rodent models. Administration of the OCT
substrate imatinib in combination with cisplatin prevented nephrotoxicity caused by renal accumu-
lation of platinum in rats (40), and concomitant administration of cimetidine inhibited cisplatin-
induced nephrotoxicity in mice (41). A case of severe arrhythmia caused by reduced renal clearance
of the antiarrhythmic pilsicainide was postulated to be caused by inhibition of P-glycoprotein or
OCT2 by the antihistamine cetirizine (42). This suggests that there may be additional drug sub-
strates of OCTs, particularly OCTs expressed in an organ-specific fashion such as OCT1 and
OCT2, which are involved in OCT-mediated hepatic or renal drug elimination and interactions.

Multidrug and Toxin Extrusion Transporters

The multidrug and toxin extrusion transporters (MATE transporters/SLC47A) are among the
most recently identified transporters of functional importance in cation transport, although the
existence of a renal efflux transport system had been known for some time (43). MATE1 (SLC47A1)
is expressed throughout the body, but predominantly in the liver and kidneys, where it is localized
to the canalicular membrane of hepatocytes and the luminal membrane of proximal tubule cells,
respectively (44, 45). In contrast, MATE2-K, the protein form of MATE2 (SLC47A2) that has been
functionally characterized, is expressed specifically in the kidney proximal tubule and is localized
to the luminal membranes. Many of the substrates and inhibitors of MATE transporters overlap
with those of OCTs; therefore, the role of MATE transporters in mediating cation transport and
drug-drug interactions in the kidney may have been underestimated in the past (5, 7).

Multidrug and toxin extrusion transporters in efficacy. Several polymorphisms in genes en-
coding MATE transporters have been identified and functionally characterized (46–49). Many of
these variants exhibit changes to transport activity in vitro; however, the influence of these poly-
morphisms in vivo remains to be seen. In one study of diabetic patients, heterozygous SLC47A1
and SLC47A2 variants did not alter the pharmacokinetics of metformin (50), although another
study found an association between the SLC47A1 SNP rs2289669 and increased HbA1c reduction
in patients taking metformin (51). A third study found that the effect of the SLC47A1 polymor-
phism on metformin-mediated HbA1c levels was larger in patients homozygous for the SLC22A1
polymorphism rs622342 than in individuals with the SLC22A1 reference allele, thus illustrating
an example of a MATE1-OCT1 genotype interaction (52).

Multidrug and toxin extrusion transporters in toxicity. Pharmacokinetic studies in Mate1−/−

mice have provided some insight into the potential for MATE transporter–mediated changes
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in substrate clearance and incidence of toxicity. Metformin concentration in kidney, liver, and
plasma was increased in Mate1−/− compared with wild-type mice following intravenous admin-
istration, whereas urinary excretion was reduced (53). Reduced urinary excretion and increased
renal concentration of the antibiotic cephalexin was observed in Mate1−/− mice compared with
wild-type animals (54). Following cisplatin exposure, the life span of Mate1−/− mice was signifi-
cantly shorter, with a higher plasma and renal concentration in the knockout mice compared with
control animals (55).

A transporter-mediated interaction between a drug and an endogenous substrate was identified
in a study of the novel antibacterial agent DX-619 in healthy volunteers (56). This study showed
that the elevated serum creatinine levels caused by this compound resulted from inhibition of
OCT2, MATE1, and MATE2-K and from the subsequent reduced tubular secretion of creatinine.
To date, MATE transporter–mediated potential drug-drug interactions that have been studied in
vitro include cimetidine inhibition of fexofenadine transport (57) and the ability of tyrosine kinase
inhibitors to inhibit MATE transporter function (58).

Organic Anion Transporters

The organic anion transporters (OATs/SLC22A) move small organic anions against their concen-
tration gradient using a Na+ gradient maintained by Na+/K+-ATPase. Of particular importance
in drug disposition are OAT1 (SLC22A6), which is predominantly expressed on the basolateral
membrane of proximal renal tubules, and OAT3 (SLC22A8), which is predominantly expressed
throughout the kidney and in the choroid plexus, although both OAT1 and OAT3 are expressed
in other tissues in the body. In the kidney, OAT1 and OAT3 facilitate the uptake of compounds
from the blood and share a broad and partially overlapping substrate specificity. OAT substrates
include steroid hormones, biogenic amines, and drugs such as the angiotensin converting enzyme
inhibitors captopril and quinaprilat, the angiotensin II receptor blocker olmesartan, and numer-
ous antibiotics and antivirals. Many drugs in clinical use are inhibitors of OAT transport in vitro,
including antibiotics, antivirals, and nonsteroidal anti-inflammatory drugs (NSAIDs) (59, 60).

Oat1−/− and Oat3−/− mice have provided some insight into the role of OATs in vivo. In
Oat3−/− mice, clearance of the antibiotics penicillin G (61) and ciprofloxacin (62) was reduced,
and brain concentration of the active form of the anti-influenza drug oseltamivir, Ro64–0802, was
higher than that of wild-type controls (63). The loop and thiazide diuretics likely rely on Oats for
their secretion into the kidney proximal tubules, as demonstrated in Oat1−/− and Oat3−/− mice
given furosemide or bendroflumethiazide (64).

Inhibition of OAT-mediated kidney proximal tubule secretion by coadministered anionic drugs
has been implicated in numerous drug-drug interactions that may have desirable or undesirable
consequences. A classic example is the probenecid and β-lactam antibiotic interaction, whereby
probenecid inhibits penicillin secretion, likely at OAT3, resulting in increased penicillin exposure
(59). Conversely, NSAID inhibition of OAT transport may result in a potentially life-threatening
exposure to methotrexate when these two compounds are administered together (65, 66). In addi-
tion, the nephrotoxic effects of antivirals such as adefovir may be attenuated by coadministration
with NSAIDs, which inhibit their OAT-mediated uptake in vitro (67).

To date, genetic variants in genes encoding OATs have not been associated with changes in
drug disposition (1), although a polymorphism in the intergenic region between SLC22A6 and
SLC22A8 (rs10792367) was recently found to be modestly associated with blood pressure response
to hydrochlorothiazide (68). The large number of substrates and inhibitors of the OATs means
that they continue to be transporters of interest in drug disposition and response.
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Organic Anion Transporting Polypeptides

The organic anion transporting polypeptides (OATPs/SLCO) have a wide substrate specificity for
amphipathic molecules, including endogenous compounds such as bile acids, thyroid hormones,
sulfated and glucuronidated hormones, and drug substrates including rifampicin, methotrexate,
antidiabetics, and statins (69–71).

Organic anion transporting polypeptides in efficacy. Of the human OATPs, OATP1B1
(SLCO1B1; previously known as OATP-C, OATP2, and LST-1) has been studied most exten-
sively, owing to the prevalence of clinically relevant polymorphisms (72). OATP1B1 is expressed
exclusively on the basolateral membrane of the liver and is thought to be the driving force for
hepatic uptake of statins and certain antidiabetic drugs that target the liver as their site of action.
SLCO1B1 is highly polymorphic (72, 73); the most extensively characterized variant is the loss-
of-function polymorphism c.521T>C (rs4149056), which has a frequency of approximately 15%
in Asian and Caucasian populations. Aberrant cell surface trafficking of this allele may result in
reduced hepatic uptake of OATP1B1 substrates in affected individuals.

Given that statins target the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase
enzyme in the liver, it might be expected that reduced hepatic uptake by OATP1B1 would be
accompanied by reduced efficacy, as the statin does not reach sufficient concentration in the liver
to inhibit the enzyme effectively. This was demonstrated in studies that showed the SLCO1B1
c.521T>C polymorphism was associated with the lipid-lowering effect of statins in healthy vol-
unteers (74–76) and in a small group of patients (77), but the association of SLCO1B1 c.521C>T
with reduced statin efficacy has not been convincingly demonstrated in large patient cohorts.

In total, the influence of SLCO1B1 polymorphisms on the pharmacokinetics of more than
20 clinically used drugs has been studied (72); these drugs include fexofenadine (78), irinotecan
(79, 80), lopinavir (81, 82), methotrexate (83), and repaglinide (84–86). In addition, SLCO1B1
c.521T>C has been associated with toxic side effects caused by the anticancer drugs irinotecan
(87, 88) and methotrexate (89). Not all in vitro substrates of OATP1B1 appear to be affected by
OATP1B1 polymorphisms in vivo, suggesting that for certain substrates, additional transporters
may compensate for loss of OATP1B1 function. For example, bosentan was described as a substrate
of OATP1B1 and OATP1B3 (90); however, it does not appear that polymorphisms in either of
these transporters significantly influence bosentan pharmacokinetics in vivo (91).

OATP1B3 (SLCO1B3; previously known as OATP8 and LST-2) is also expressed on the
basolateral membrane of human hepatocytes. In addition to transporting many of the same com-
pounds transported by OATP1B1, OATP1B3 transports taxanes and numerous small peptides.
Polymorphisms in SLCO1B3 have been identified and assessed for transport activity (92, 93),
although evidence for the clinical importance of these polymorphisms is less clear than for
SLCO1B1. Genetic variants in SLCO1B3 were not associated with paclitaxel or docetaxel phar-
macokinetics in Caucasian cancer patients, despite evidence for OATP1B3-mediated transport of
these drugs in vitro (94–96). SLCO1B3 variants were, however, associated with docetaxel-induced
leukopenia in Japanese cancer patients (97), and SLCO1A/1B−/− knockout mice had a twofold
increased exposure to paclitaxel compared with wild-type animals (98). Thus, the role of OATP1B3
in taxane transport is not fully understood, although it is interesting that OATP1B3 is overex-
pressed in colorectal and breast cancers and that its transport activity may be important in drug
entry to tumor cells (99).

The other OATP expressed on the basolateral membrane of human hepatocytes, OATP2B1
(SLCO2B1; previously known as OATP-B), is also expressed on the apical membrane of entero-
cytes, where it may be involved in the intestinal uptake of its substrates. Reduced plasma levels of the
leukotriene receptor antagonist montelukast were associated with the nonsynonymous SLCO2B1
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polymorphism c.935G>A (rs12422149); individuals with this polymorphism also experienced less
improvement in their symptoms compared with wild-type individuals (101). Reduced exposure
to the OATP2B1 substrate aliskiren following ingestion of apple, orange, or grapefruit juice is
postulated to result from inhibition of intestinal OATP2B1-mediated transport (102, 103). For
montelukast, orange juice consumption had an effect on plasma exposure for wild-type carriers
but not for SLCO2B1 c.935G>A carriers; the latter had reduced montelukast exposure regardless
of treatment (104).

Oatp1b2 was the first murine Oatp to be studied in a knockout mouse model and is the closest
ortholog of the human OATPs expressed in the liver, OATP1B1 and OATP1B3. Slco1b2−/−

mice had lower liver-to-plasma ratios of the prototypical OATP1B substrates pravastatin,
lovastatin, and rifampicin compared with wild-type controls (105, 106), indicating the importance
of Oatp1b2 in mediating the hepatic uptake of these compounds. Reduced hepatic uptake of
the toxins phalloidin and microcystin-LR in Slco1b2−/− mice resulted in protection against
hepatotoxicity induced by these compounds (107). There are additional Oatps of the Oatp1a
family that are expressed in mouse but not human liver, and compensation by these transporters
in Slco1b2−/− mice may not fully reflect the effect of OATP1B loss in humans. Slco1a/1b−/− mice
with deletion of Oatp1b2, Oatp1a1, Oatp1a4, Oatp1a5, and Oatp1a6 expression demonstrate
significantly reduced hepatic concentrations and elevated plasma levels of methotrexate and
fexofenadine (108) and provide a model to further elucidate the combined role of the Oatp1a and
Oatp1b families in drug disposition.

Organic anion transporting polypeptides in toxicity. Numerous studies of statin pharmacoki-
netics in healthy individuals have demonstrated that reduced-function SLCO1B1 polymorphisms,
particularly c.521T>C, increase the area under the curve of plasma exposure to nearly all the
statins, including atorvastatin (109, 110), pravastatin (111–117), pitavastatin (118–120), rosuva-
statin (109, 121, 122), and simvastatin acid (123) (Table 2). Increased systemic statin exposure is
thought to be one component of risk for muscle toxicity, a side effect associated with statin use that
can range from mild to life-threatening in its severity. In 2008, a genome-wide association study
identified a variant in complete linkage disequilibrium with SLCO1B1 c.521T>C to be the single
best predictor of myopathy risk in individuals on high doses of simvastatin (124). Subsequently,
the SLCO1B1 c.521T>C variant was found to be a modest risk predictor for cerivastatin-induced
rhabdomyolysis in a candidate gene study of 185 cases matched to controls (125). In another
study, SLCO1B1 c.521T>C was associated with severe myopathy induced by simvastatin, but not
atorvastatin (126). Analysis of 509 subjects who were randomized to receive low-dose atorvastatin,
simvastatin, or pravastatin followed by higher doses of the same drug demonstrated an association
between the same polymorphism and adverse events such as discontinuation, myalgia, or creatine
kinase elevation following the dose escalation (127). Most recently, the incidence of less severe
forms of statin intolerance, as manifested by adjusting the dose or switching to another statin,
was associated with the SLCO1B1 c.521T>C polymorphism in a study of more than 4,000 dia-
betic patients (128). Finally, OATP2B1 was identified as a statin transporter present in muscle
tissue, indicating a potential role for statin entry into muscle tissue as part of the mechanism of
statin-associated muscle toxicity (129).

EFFLUX TRANSPORTERS OF THE ATP-BINDING
CASSETTE SUPERFAMILY

ATP-binding cassette (ABC) transporters use energy from the hydrolysis of ATP to move their
substrates across biological membranes and against their concentration gradients, thereby limiting
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Table 2 Transporter polymorphisms involved in statin pharmacokinetics and response

Statin
Transporter/

polymorphism Population studied Experimental approach
Effect of

polymorphism Reference(s)
Atorvastatin SLCO1B1

c.521T>C
(rs4149056)

Healthy subjects Candidate gene;
Full pharmacokinetics
profile

Increased AUC and
Cmax

109, 110

Patients (n = 509) Candidate gene;
Dose escalation

Increased incidence
of muscle toxicity

127

Patients (25 cases,
84 controls)

Candidate gene;
Case-control study

No association with
muscle toxicity

126

ABCG2 c.421C>A
(rs2231142)

Healthy subjects
(n = 32)

Candidate gene;
Full pharmacokinetics
profile

Increased AUC 169

Rosuvastatin SLCO1B1
c.521T>C

Healthy subjects Candidate gene;
Full pharmacokinetics
profile

Increased AUC and
Cmax

109, 121, 122

ABCG2 c.421C>A Healthy subjects
(n = 32)

Candidate gene;
Full pharmacokinetics
profile

Increased AUC and
Cmax

169

Patients (n = 386) Candidate gene (61
genes)

Enhanced
LDL-C-lowering
response

174

Hypercholesterolemic
patients (n = 305)

Candidate gene Enhanced
LDL-C-lowering
response

175

Myocardial infarction
patients (n = 601)

Candidate gene (6 genes);
Substudy of RCT

Enhanced
LDL-C-lowering
response

176

Simvastatin SLCO1B1
c.521T>C

Healthy subjects
(n = 32)

Candidate gene;
Full pharmacokinetics
profile

Increased AUC and
Cmax

123

Patients (85 cases, 90
controls)

Genome-wide association
study; Substudy of RCT

Increased incidence
of muscle toxicity

124

Patients (25 cases, 84
controls)

Candidate gene;
Case-control study

Increased incidence
of muscle toxicity

126

Patients (n = 509) Candidate gene;
Dose escalation

Increased incidence
of muscle toxicity

127

Diabetic patients
(n = 4,196)

Candidate gene;
Population cohort study

Increased incidence
of statin
intolerance

128

Abbreviations: AUC, area under the curve; Cmax, maximum concentration; LDL-C, low-density lipoprotein cholesterol; RCT, randomized controlled trial.

cellular accumulation of their substrates. Members of this large family are identified by the presence
of a highly conserved ATP-binding motif (3).

P-glycoprotein

P-glycoprotein (MDR1/ABCB1) is an ABC transporter with an important role in protecting tissues
from xenobiotics. The protein was originally identified in cells selected for multidrug resistance
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(130) and has subsequently been studied extensively in the context of normal physiology and tumor
biology (131). Of particular importance in drug disposition is the expression of P-glycoprotein
in the apical membrane of enterocytes, hepatocytes, and kidney proximal tubules, and in the
endothelial cells of the blood-brain barrier (131).

As it became apparent that P-glycoprotein was not the only molecule capable of conferring
a multidrug-resistant phenotype, two other ABC transporters involved in multidrug resistance
were cloned: multidrug resistance-associated protein 1 (MRP1/ABCC1) (132) and breast cancer
resistance protein (BCRP/ABCG2) (133–135). Expression of these transporters, along with their
functional genetic polymorphisms, has been implicated in drug response and prognosis for nu-
merous tumor types and chemotherapeutic agents. Many detailed reviews of ABC transporters
and anticancer therapy have been published (136, 137).

P-glycoprotein has broad substrate specificity for structurally divergent compounds; in gen-
eral, its substrates are hydrophobic and may be cationic. Substrates of P-glycoprotein include
HIV protease inhibitors, calcium channel blockers, and anticancer drugs of the vinca alkaloid,
anthracycline, and taxane classes. P-glycoprotein is inhibited by numerous compounds including
verapamil, ritonavir, and cyclosporine (131). A great deal of effort has been expended to identify
potent and selective P-glycoprotein inhibitors that may be used to overcome multidrug resistance,
but these efforts have not been as successful as hoped (138). Mouse P-glycoprotein was recently the
first mammalian ABC transporter to be crystallized and characterized at a high resolution (139).
The identification of substrate and inhibitor binding sites will contribute to an understanding of
the mechanism of ABC transporters in general and assist the effort to design molecules that inhibit
P-glycoprotein in order to overcome multidrug resistance.

The role of P-glycoprotein in reducing the absorption of xenobiotics can be directly examined
by comparing oral drug exposure in Mdr1a/1b−/− mice with wild-type controls. This model
proved to be particularly helpful in outlining the likely in vivo impact of this transporter on
the observed oral bioavailability of substrate drugs such as HIV protease inhibitors, topotecan,
etoposide, tacrolimus, ivermectin, and loperamide (140).

In addition to limiting oral bioavailability, the expression and function of this efflux transporter
in the endothelial cells that constitute the blood-brain barrier appear to be critical to limiting
the central nervous system (CNS) entry of many substrate drugs, including those predicted to
have brain accumulation on the basis of physicochemical properties such as lipophilicity (141).
Endoxifen, the active metabolite of the estrogen receptor antagonist tamoxifen, is a newly identified
P-glycoprotein substrate, with significantly higher endoxifen concentrations observed in the brains
of Mdr1a/1b−/− mice (142, 143). Expression of P-glycoprotein at the blood-brain barrier has
also been implicated in anticonvulsant therapy failure, although its clinical relevance remains
controversial (144). Conversely, limited CNS entry by third-generation antihistamines that are
P-glycoprotein substrates, such as fexofenadine, has proven to be a desirable property as it reduces
the side effect of sedation (145).

For some drugs that are substrates of BCRP, P-glycoprotein alone does not fully limit CNS
drug entry, and only when both transporters are absent is the magnitude of CNS drug accumu-
lation significantly enhanced. This has been shown through the use of the Mdr1a/1b/Bcrp−/−

mice for tyrosine kinase inhibitors such as lapatinib, imatinib, sunitinib, and tandutinib, which
are substrates of P-glycoprotein and BCRP (146–149). Species differences in the brain uptake
of radiolabeled P-glycoprotein substrates have been observed by positron emission tomography,
and although the mechanisms for these differences are not well understood, they may be a
consideration for animal studies conducted in preclinical drug development (150).

ABCB1 is highly polymorphic; however, the in vivo role of these polymorphisms has not been
consistently demonstrated. To date, hundreds of studies in genotype-defined subjects have been
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conducted with numerous P-glycoprotein substrates, and the results have been mixed (131, 151).
The ABCB1 c.3435T>C (rs1045642) variant in particular has received a great deal of attention but
the data are conflicting. These inconsistent findings may result from different experimental condi-
tions, inadequate sample sizes, or heterogeneity of the sample population studied. Many substrates
that are used as probes for transporter function are also substrates for drug-metabolizing enzymes
or other transporters. For example, transport studies with cyclosporine and tacrolimus may be
complicated by the involvement of CYP3A metabolism, and, in addition to being transported by
P-glycoprotein, fexofenadine is also a substrate of OATPs (152). Thus, metabolism and transport
by proteins other than P-glycoprotein may contribute significantly to the observed variability in
drug disposition. Future studies from current resequencing efforts with larger sample sizes and
more detailed genetic information may help clarify the influence of genetic polymorphisms in
ABCB1.

Breast Cancer Resistance Protein

Breast cancer resistance protein (BCRP/ABCG2) is expressed on the luminal membrane of en-
terocytes, with greatest expression observed in the duodenum; it is important for limiting the
oral bioavailability of its substrates (153). BCRP is also expressed on the canalicular membrane of
hepatocytes, where it is involved in facilitating biliary excretion, and found in sanctuary sites such
as the blood-brain barrier, placenta, and testes. BCRP substrates include numerous anticancer
agents, such as the topoisomerase II inhibitor etoposide, the camptothecin derivatives topotecan
and irinotecan, and the tyrosine kinase inhibitors imatinib and gefitinib. Other substrates of BCRP
include statins, antibiotics, numerous environmental toxins, and endogenous substrates such as
conjugated steroid hormones, folates, and uric acid (154–156).

Bcrp1−/− mice have been useful in elucidating the relative contribution of Bcrp1 to drug absorp-
tion, distribution, and excretion in tissues where other ABC transporters with overlapping function
may be present. The first in vivo evidence for another transporter active along with P-glycoprotein
was the observation that the oral bioavailability of topotecan, a shared P-glycoprotein and Bcrp1
substrate, was significantly increased when the Bcrp1 and P-glycoprotein inhibitor GF120916 was
coadministered with topotecan to Mdr1a/1b−/− mice (157). Since these early results, many studies
in Bcrp1−/− mice have been conducted to better elucidate the role of BCRP in drug penetration
of the CNS and in oral bioavailability (158).

Comparison of single ABC transporter gene knockout mice with multiple ABC transporter
gene knockout mice may be useful in understanding the overlapping functions of BCRP and
P-glycoprotein with members of the MRPs, as demonstrated by studies of methotrexate phar-
macokinetics in double and triple knockout animals. For example, plasma concentration of the
toxic metabolite 7-hydroxymethotrexate was not significantly different in Bcrp1−/− mice, but
6.2-fold increased in Mrp2−/− mice and 12.4-fold increased in Mrp2;Bcrp1−/− mice compared
with wild-type animals. These results indicate that both Mrp2 and Bcrp1 are important deter-
minants of methotrexate distribution but that Mrp2 is better able than Bcrp1 to compensate
for the loss of the other transporter (159). Triple knockout Mrp2;Mrp3;Bcrp1−/− mice retained
67% of an intravenous dose of methotrexate in their livers 1 h after administration compared
with wild-type mice that had only 7% of the dose remaining. These results highlight the over-
lapping functional roles of Mrp2, Mrp3, and Bcrp1 in biliary excretion of toxic metabolites
(160).

BCRP is expressed in lactating mammary glands and has a demonstrated role in active efflux
of xenobiotics into milk. Levels of topotecan, the H2 blocker cimetidine, and the antibiotic nitro-
furantoin, as well as the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
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(PhIP), were significantly lower in milk from Bcrp1−/− mice than from wild-type mice (161, 162).
The involvement of BCRP in the secretion of toxic compounds into breast milk is counterintuitive
for a transporter that otherwise plays a protective role, and avoidance of BCRP substrates may be
a consideration for nursing women. BCRP was demonstrated to concentrate riboflavin (vitamin
B12) into breast milk, an observation that may provide some insight into its physiological function
in the mammary gland (163).

Reduced-function polymorphisms in ABCG2 have been identified, and from the known func-
tion and location of BCRP, they would be expected to increase the bioavailability of BCRP
substrates owing to reduced efflux from enterocytes and reduced biliary excretion. Exposure to
sulfasalazine was significantly increased in healthy volunteers with one or more ABCG2 variants
following oral administration of the drug (164, 165). These findings were consistent with increased
oral bioavailability and reduced excretion of sulfasalazine in Bcrp1−/− mice (166). These results
raised the possibility of using sulfasalazine as an in vivo probe of BCRP activity, an especially at-
tractive tool given that expression of both mRNA and protein is highly variable in human intestinal
samples and that this variation is independent of common genetic variants (164, 167). However,
a recent pharmacokinetic study of sulfasalazine in 36 healthy volunteers failed to reproduce these
results because the presence of the ABCG2 c.421C>A (rs2231142) polymorphism or coadmin-
istration of the BCRP inhibitor pantoprozole showed no effect on sulfasalazine plasma exposure
or maximum plasma concentrations (168). Thus, more work is needed to validate the utility of
sulfasalazine as an in vivo probe of BCRP activity.

The total exposure to atorvastatin and rosuvastatin is higher in individuals with the ABCG2
c.421T>C polymorphism (169, 170), consistent with reduced biliary excretion of rosuvastatin in
Bcrp1−/− mice (171) (Table 2). Conversely, pitavastatin pharmacokinetics were not influenced by
the ABCG2 c.421C>A polymorphism in healthy volunteers (119) despite the involvement of Bcrp1
in biliary excretion of pitavastatin in mice (172). Another study linked the ABCG2 polymorphism
to the pharmacokinetics of fluvastatin and simvastatin lactone, but not to the pharmacokinetics
of pravastatin or simvastatin acid (173). BCRP appears to be particularly important for the dis-
tribution of rosuvastatin, as multiple studies have now associated reduced-function ABCG2 poly-
morphisms with increased lipid-lowering response to rosuvastatin therapy in patients (174–176),
presumably a result of increased exposure to rosuvastatin, which mimics the effect of increasing
the statin dose.

The role of BCRP in cancer treatment efficacy and prognosis has been widely studied owing
to the vast number of antineoplastic drugs that are substrates for this efflux transporter. Indeed,
ABCG2 polymorphisms have been associated with increased exposure and/or risk for toxicity for
numerous anticancer drugs in clinical use. For example, reduced-function BCRP variants were
associated with higher area under the curve and maximum concentration values of the tyrosine
kinase inhibitor erlotinib; higher trough erlotinib levels were associated with skin rash (177).
Expression of BCRP in cancer cells is generally associated with poor prognosis; however, this
association has not been demonstrated for all tumor types. In particular, BCRP expression has
been linked to poor prognosis in acute myeloid leukemia in adults and children (178, 179) and to
poor prognosis in esophageal squamous cell carcinoma (180). Whether the association of BCRP
with reduced survival is a result of increased BCRP-mediated efflux of anticancer drugs or a
marker of more complex biology is not fully understood. BCRP is expressed in stem cells, and
indeed, some discrepancy in findings may be related to the relative composition of the subtypes
of cells in the tissue samples obtained. For a more comprehensive review of the role of BCRP
in anticancer drug efficacy, toxicity, and overall prognosis, refer to recent comprehensive reviews
(181, 182).
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Multidrug Resistance-Associated Proteins

Of the multidrug resistance-associated protein (MRP) family of ABC transporters, MRP1
(ABCC1), MRP2 (ABCC2), and MRP4 (ABCC4) have been most widely studied in the context
of drug response and toxicity. In some cancers, their expression may be associated with poor
overall prognosis or response to therapy (137).

Multidrug resistance-associated protein 1 in efficacy and toxicity. MRP1 is expressed in
tissues throughout the body, including the lung, testis, kidney, cardiac and skeletal muscle, and
placenta. As described above, overexpression of MRP1 in cancer cells is associated with multidrug
resistance (183). Like P-glycoprotein, MRP1 is capable of transporting structurally diverse com-
pounds. Endogenous substrates of MRP1 include oxidized glutathione, cysteinyl leukotrienes,
glucuronide and sulfate conjugates, and drug substrates including anthracyclines, vinca alkaloids,
and antivirals. Mice lacking Mrp1 demonstrate increased sensitivity to the topoisomerase II in-
hibitor etoposide (184, 185). Functional ABCC1 polymorphisms have been described (186), but
to date, ABCC1 variants have not been associated with striking changes in drug response.

Multidrug resistance-associated protein 2 in efficacy and toxicity. MRP2 is expressed on
the canalicular membrane of the hepatocyte and on the apical membrane of renal proximal tubule
endothelial cells (187). MRP2 transports a wide range of glutathione, sulfate, and glucuronide-
conjugated endo- and xenobiotics. Genetic mutations in MRP2 cause Dubin-Johnson syndrome,
a disease characterized by hyperbilirubinemia resulting from reduced transport of conjugated
bilirubin into bile (188). Polymorphisms in ABCC2 have been associated with higher plasma
concentrations of some MRP2 substrates (189). The gastrointestinal toxicity associated with the
use of some drugs, such as NSAIDs and antibiotics, may result from enterohepatic recirculation of
these compounds and their metabolites that is driven, in large part, by MRP2 in the bile canaliculi
(190).

Multidrug resistance-associated protein 4 in efficacy and toxicity. MRP4 is located on the
basolateral membrane of hepatocytes and choroid plexus epithelium and on the apical membrane
of kidney proximal tubule cells and brain capillary endothelium (191). Localization of MRP4
to the basolateral or apical membrane, depending on the polarized cell type, is associated with
the expression of the adaptor protein NHERF1 (192). Substrates of MRP4 include numerous
endogenous compounds involved in cellular signaling, such as cyclic nucleotides, eicosanoids,
urate, and conjugated steroids, as well as folate, bile acids, and glutathione. Drug substrates of
MRP4 include cephalosporin antibiotics, nucleotide analog reverse transcriptase inhibitors, and
cytotoxic agents such as methotrexate and 6-mercaptopurine (191).

A SNP in ABCC4 (c.G2269A, rs3765534) caused disrupted membrane localization and reduced
MRP4 activity, and it was hypothesized to increase sensitivity to thiopurine-induced myelosup-
pression as a result of thiopurine metabolite accumulation in hematopoietic cells (193). Polymor-
phisms in ABCC4 were reported to be associated with side effects and survival in childhood acute
lymphoblastic leukemia patients treated with methotrexate (194); however, the same genotypes did
not show any influence on the event-free survival in adult acute lymphoblastic leukemia patients
receiving methotrexate (195).

CONCLUSIONS AND FUTURE PERSPECTIVES

The past decade has seen remarkable progress in the field of drug transporters, not only in terms
of functional characterization and substrate specificity but also in elucidating the important role
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that transporters play in the disposition and efficacy of drugs in clinical use. Drug interactions
that target uptake or efflux transporters can often result in unexpected systemic exposure and, in
some cases, organ specific toxicity. Interestingly, the same processes that can result in higher tissue
drug accumulation can also be utilized to produce a desirable therapeutic effect, as exemplified
by the statin class of lipid-lowering drugs that utilize liver-specific uptake transporters to target
hepatic HMG-CoA reductase. The next decade holds even greater promise of new discoveries
relating to drug transporters. Indeed, as we approach the personal genomics era, the field of drug
transporter pharmacogenomics will no doubt prove to be integral to the delivery of personalized
medicine. In addition, the systematic inclusion of drug transporter studies in the drug discovery
and development process will result in drugs with greater efficacy and reduced side effects.

Finally, the efforts of dedicated drug transporter researchers over the past half century have
resulted in a paradigm shift in our understanding of how drugs are handled by the body. What was
once thought to be predictable, on the basis of simple physicochemical properties, has given way
to our current recognition of the important role that drug transporters play in all aspects of drug
absorption, tissue distribution, and elimination. Indeed, drug transporter research has matured
and proven to be remarkably significant to human health and optimal therapeutics.

SUMMARY POINTS

1. Drug transporters are ubiquitously expressed, and many are critical for drug entry into
and elimination from tissues in the body.

2. Genetic polymorphisms in drug transporters may result in changes in drug pharmacoki-
netics leading to reduced drug efficacy and increased risk for drug-induced toxicity.

3. Drug transporters are involved in numerous drug-drug interactions; often, this is a result
of one drug inhibiting the transport of another.

4. Knockout mouse models have provided valuable insight into the in vivo contribution of
numerous transporters; however, these studies are sometimes limited by species differ-
ences in transporter expression and substrate specificity.

FUTURE ISSUES

1. Standards for transporter studies in drug discovery and development should be imple-
mented, as described in a recent white paper by the International Transporter
Consortium.

2. Better individualization of drug therapy must be provided through the integration of
transporter-related genetic and clinical variables into drug choice and dose algorithms.

3. Continued efforts to improve the extrapolation of data from in vitro and in vivo animal
experiments to the in vivo human setting and clinical relevance are needed.
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